Matrices As Arrows! A Biproduct Approach to Typed Linear Algebra
نویسندگان
چکیده
Motivated by the need to formalize generation of fast running code for linear algebra applications, we show how an index-free, calculational approach to matrix algebra can be developed by regarding matrices as morphisms of a category with biproducts. This shifts the traditional view of matrices as indexed structures to a type-level perspective analogous to that of the pointfree algebra of programming. The derivation of fusion, cancellation and abide laws from the biproduct equations makes it easy to calculate algorithms implementing matrix multiplication, the kernel operation of matrix algebra, ranging from its divide-and-conquer version to the conventional, iterative one. From errant attempts to learn how particular products and coproducts emerge from biproducts, we not only rediscovered block-wise matrix combinators but also found a way of addressing other operations calculationally such as e.g. Gaussian elimination. A strategy for addressing vectorization along the same lines is also given.
منابع مشابه
Typing linear algebra: A biproduct-oriented approach
Interested in formalizing the generation of fast running code for linear algebra applications, the authors show how an index-free, calculational approach to matrix algebra can be developed by regarding matrices as morphisms of a category with biproducts. This shifts the traditional view of matrices as indexed structures to a type-level perspective analogous to that of the pointfree algebra of p...
متن کاملA brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملOn the square root of quadratic matrices
Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of $2times 2$ matrices.
متن کاملTyped Linear Algebra for Weighted (Probabilistic) Au- tomata
There is a need for a language able to reconcile the recent upsurge of interest in quantitative methods in the software sciences with logic and set theory that have been used for so many years in capturing the qualitative aspects of the same body of knowledge. Such a lingua franca should be typed, polymorphic, diagrammatic, calculational and easy to blend with traditional notation. This paper p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010